Investing in Ocean Energy

Creation of tidal energy is based on the temperature difference that is present in the ocean. The surface water in the ocean is hotter compared to the deep ocean water below. In some areas like the tropical regions, the surface water can be more than 40 degrees warmer than the deep water. The method of converting this temperature difference into electricity is known as the OTEC or the Ocean Thermal Energy Conversion.

The tidal energy of the ocean can be harnessed through dams and turbines. Dams are based on using a barrage at a bay or estuary with a large tidal range. Power is generated primarily at ebb tides as the barrage creates a significant head of water, much like a hydroelectric dam. Tidal turbines take advantage of fast-flowing ocean currents to create energy.

Tidal power is the most predictable and reliable sources of renewable energy. The tides occur reliably, independent of the weather or climate changes. With the development of newer technologies, ocean resources are able to meet the world’s energy demands. It is believed that 0.2% of the untapped energy can power the entire world. That’s why, investing in a Tidal Energy Project can be a great investment for investors of the world.

Tidal power harnesses the power of the water as the tides ebb and flow.
Wave power harnesses the constant to and fro of the ocean waves.

Wave power is the transport of energy by ocean surface waves, and the capture of that energy to do useful work — for example for electricity generation, water desalination, or the pumping of water (into reservoirs).

Waves are generated by wind passing over the surface of the sea. As long as the waves propagate slower than the wind speed just above the waves, there is an energy transfer from the wind to the waves. Both air pressure differences between the upwind and the lee side of a wave crest, as well as friction on the water surface by the wind, making the water to go into the shear stress causes the growth of the waves.

Wave height is determined by wind speed, the duration of time the wind has been blowing, fetch (the distance over which the wind excites the waves) and by the depth and topography of the seafloor (which can focus or disperse the energy of the waves). A given wind speed has a matching practical limit over which time or distance will not produce larger waves. When this limit has been reached the sea is said to be “fully developed”.

In general, larger waves are more powerful but wave power is also determined by wave speed, wavelength, and water density.

Oscillatory motion is highest at the surface and diminishes exponentially with depth. However, for standing waves (clapotis) near a reflecting coast, wave energy is also present as pressure oscillations at great depth, producing microseisms. These pressure fluctuations at greater depth are too small to be interesting from the point of view of wave power.

The waves propagate on the ocean surface, and the wave energy is also transported horizontally with the group velocity. The mean transport rate of the wave energy through a vertical plane of unit width, parallel to a wave crest, is called the wave energy flux (or wave power, which must not be confused with the actual power generated by a wave power device).

Tidal power, also called tidal energy, is a form of hydropower that converts the energy of tides into electricity or other useful forms of power. The first large-scale tidal power plant (the Rance Tidal Power Station) started operation in 1966.

Although not yet widely used, tidal power has potential for future electricity generation. Tides are more predictable than wind energy and solar power. Among sources of renewable energy, tidal power has traditionally suffered from relatively high cost and limited availability of sites with sufficiently high tidal ranges or flow velocities, thus constricting its total availability. However, many recent technological developments and improvements, both in design (e.g. dynamic tidal power, tidal lagoons) and turbine technology (e.g. new axial turbines, crossflow turbines), are suggesting that the total availability of tidal power may be much higher than previously assumed, and that economic and environmental costs may be brought down to competitive levels.

Historically, tide mills have been used, both in Europe and on the Atlantic coast of North America. The earliest occurrences date from the Middle Ages, or even from Roman times.

Tidal power is the only form of energy which derives directly from the relative motions of the Earth–Moon system, and to a lesser extent from the Earth–Sun system. The tidal forces produced by the Moon and Sun, in combination with Earth’s rotation, are responsible for the generation of the tides. Other sources of energy originate directly or indirectly from the Sun, including fossil fuels, conventional hydroelectric, wind, biofuels, wave power and solar. Nuclear energy is derived using radioactive material from the Earth, geothermal power uses the Earth’s internal heat which comes from a combination of residual heat from planetary accretion (about 20%) and heat produced through radioactive decay (80%).
Tidal energy is generated by the relative motion of the water which interact via gravity. Periodic changes of water levels, and associated tidal currents, are due to the gravitational attraction by the Sun and Moon. The magnitude of the tide at a location is the result of the changing positions of the Moon and Sun relative to the Earth, the effects of Earth rotation, and the local shape of the sea floor and coastlines.

Because the Earth’s tides are caused by the tidal forces due to gravitational interaction with the Moon and Sun, and the Earth’s rotation, tidal power is practically inexhaustible and classified as a renewable energy source.

A tidal generator uses this phenomenon to generate electricity. The stronger the tide, either in water level height or tidal current velocities, the greater the potential for tidal electricity generation.

Tidal movement causes a continual loss of mechanical energy in the Earth–Moon system due to pumping of water through the natural restrictions around coastlines, and due to viscous dissipation at the seabed and in turbulence. This loss of energy has caused the rotation of the Earth to slow in the 4.5 billion years since formation. During the last 620 million years the period of rotation has increased from 21.9 hours to the 24 hours we see now; in this period the Earth has lost 17% of its rotational energy. While tidal power may take additional energy from the system, increasing the rate of slowdown, the effect would be noticeable over millions of years only, thus being negligible.

Leave a Reply Text

Your email address will not be published. Required fields are marked *

newsletter
Want to keep up to date with all our latest news and information?
Subscribe to receive FREE TIPS, all new Radio/Podcast Episodes and Videos that will help you start Dropping your Energy Bill!
Enter your email below to join a world of new knowledge and savings!


LOGO